The DNA repair genes XPB and XPD defend cells from retroviral infection.

نویسندگان

  • Kristine Yoder
  • Alain Sarasin
  • Kenneth Kraemer
  • Michael McIlhatton
  • Frederic Bushman
  • Richard Fishel
چکیده

Reverse transcription of retroviral RNA genomes produce a double-stranded linear cDNA molecule. A host degradation system prevents a majority of the cDNA molecules from completing the obligatory genomic integration necessary for pathogenesis. We demonstrate that the human TFIIH complex proteins XPB (ERCC3) and XPD (ERCC2) play a principal role in the degradation of retroviral cDNA. DNA repair-deficient XPB and XPD mutant cell lines exhibited an increase in transduction efficiency by both HIV- and Moloney murine leukemia virus-based retroviral vectors. Replicating Moloney murine leukemia virus viral production was greater in XPB or XPD mutant cells but not XPA mutant cells. Quantitative PCR showed an increase in total cDNA molecules, integrated provirus, and 2LTR circles in XPB and XPD mutant cells. In the presence of a reverse transcription inhibitor, the HIV cDNA appeared more stable in mutant XPB or XPD cells. These studies implicate the nuclear DNA repair proteins XPB and XPD in a cellular defense against retroviral infection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional regulation of the TFIIH transcription repair components XPB and XPD by the hepatitis B virus x protein in liver cells and transgenic liver tissue.

Human hepatitis B virus is a risk factor for the development of hepatocellular carcinoma. The hepatitis B virus x protein (HBx) has been shown to inactivate the p53 tumor suppressor protein and impair DNA repair, cell cycle, and apoptosis mechanisms. Herein we report that HBx represses two components of the transcription-repair factor TFIIH, XPB (p89), and XPD (p80), both in p53-proficient and ...

متن کامل

TFIIH with inactive XPD helicase functions in transcription initiation but is defective in DNA repair.

TFIIH is a multisubunit protein complex involved in RNA polymerase II transcription and nucleotide excision repair, which removes a wide variety of DNA lesions including UV-induced photoproducts. Mutations in the DNA-dependent ATPase/helicase subunits of TFIIH, XPB and XPD, are associated with three inherited syndromes as follows: xeroderma pigmentosum with or without Cockayne syndrome and tric...

متن کامل

G-quadruplexes are genomewide targets of transcriptional helicases XPB and XPD

G4 motifs are greatly enriched near promoters, suggesting that quadruplex structures may be targets of transcriptional regulation. Here we show, by ChIP-Seq analysis of human cells, that 40% of the binding sites of the transcription-associated helicases, XPB and XPD, overlap with G4 motifs. The highly significant overlap of XPB and XPD binding sites with G4 motifs cannot be explained by GC rich...

متن کامل

Molecular insights into the recruitment of TFIIH to sites of DNA damage.

XPB and XPD subunits of TFIIH are central genome caretakers involved in nucleotide excision repair (NER), although their respective role within this DNA repair pathway remains difficult to delineate. To obtain insight into the function of XPB and XPD, we studied cell lines expressing XPB or XPD ATPase-deficient complexes. We show the involvement of XPB, but not XPD, in the accumulation of TFIIH...

متن کامل

Genetic analysis of DNA repair in the hyperthermophilic archaeon, Thermococcus kodakaraensis.

Extensive biochemical and structural analyses have been performed on the putative DNA repair proteins of hyperthermophilic archaea, in contrast to the few genetic analyses of the genes encoding these proteins. Accordingly, little is known about the repair pathways used by archaeal cells at high temperature. Here, we attempted to disrupt the genes encoding the potential repair proteins in the ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 12  شماره 

صفحات  -

تاریخ انتشار 2006